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Abstract

Routing incoming queries to the most cost-
effective LLM while maintaining response
quality poses a fundamental challenge in opti-
mizing performance-cost trade-offs for large-
scale commercial systems. We present IPR — a
quality-constrained Intelligent Prompt Routing
framework that dynamically selects optimal
models based on predicted response quality
and user-specified tolerance levels. IPR in-
troduces three key innovations: (1) a mod-
ular architecture with lightweight quality es-
timators trained on 1.5M prompts annotated
with calibrated quality scores, enabling fine-
grained quality prediction across model fami-
lies; (2) a user-controlled routing mechanism
with tolerance parameter τ ∈ [0, 1] that pro-
vides explicit control over quality-cost trade-
offs; and (3) an extensible design using frozen
encoders with model-specific adapters, reduc-
ing new model integration from days to hours.
To rigorously train and evaluate IPR, we cu-
rate an industrial-level dataset IPRBench1, a
comprehensive benchmark containing 1.5 mil-
lion examples with response quality annota-
tions across 11 LLM candidates. Deployed on
a major cloud platform, IPR achieves 43.9%
cost reduction while maintaining quality parity
with the strongest model in the Claude family
and processes requests with sub-150ms latency.

1 Introduction

The proliferation of large language models (LLMs)
with varying capabilities and costs has created a
fundamental challenge in production deployments:
how to automatically route incoming queries to the
most cost-effective model while maintaining ac-
ceptable response quality (Hu et al., 2024). This
challenge is exemplified in multi-model platforms
like Amazon Bedrock, where models range from
lightweight options like Claude Haiku ($0.25/M

1IPRBench will be released upon legal approval.

tokens) to state-of-the-art models like Claude-3.5-
Sonnet ($3/M tokens)—a 12× cost difference. User
queries exhibit enormous diversity: simple factual
questions can be handled by smaller models, while
complex reasoning tasks require more capable ones.
However, existing systems either force users to
manually select models or employ rigid routing
rules that fail to capture the continuous spectrum of
query complexity, resulting in substantial unneces-
sary costs or degraded user experiences at scale (Lu
et al., 2024; Ding et al., 2024; Ong et al., 2024).

Deploying prompt routing onto real-world pro-
duction systems poses several fundamental chal-
lenges which existing approaches have not ad-
dressed comprehensively. (1) Quality predic-
tion without generation requires routers to esti-
mate response quality for each candidate model
using only the input prompt, without actually
generating responses — a challenging task given
that model capabilities vary across different query
types and domains. While recent work like
RouteLLM (Ong et al., 2024) employs BERT-based
classifiers for this prediction, they either support
only binary strong/weak decisions rather than con-
tinuous quality estimation or are trained on small-
scale datasets. (2) Latency constraints in produc-
tion systems (<200ms per routing decision) elimi-
nate approaches that require multiple model invo-
cations or complex computations; cascade-based
methods circumvent this by sequential evaluation
but sacrifice flexibility in model selection (Yue
et al., 2024; Chen et al., 2023). (3) Model exten-
sibility and diversity becomes critical as produc-
tion platforms must simultaneously support diverse
model families (e.g., Nova, Claude, Llama) each
with distinct characteristics, while seamlessly inte-
grating frequent model updates and releases. Most
existing routers require complete retraining when
model portfolios change (Lu et al., 2024; Ding
et al., 2024), making them impractical for dynamic
environments like a centralized LLM inference plat-
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Figure 1: Routing prompt with IPRwith user tolerance.

form where new model versions appear monthly.
(4) user-specific quality-cost preferences vary sig-
nificantly across applications — a financial analysis
task may prioritize accuracy while a chatbot may fa-
vor cost efficiency — yet current routing solutions
offer little user control, typically hard-coding fixed
quality thresholds (Ding et al., 2024) that cannot
adapt to diverse business requirements.

To tackle these challenges, we propose Intelli-
gent Prompt Routing (IPR), a quality-constrained
framework that dynamically selects the most cost-
effective model while satisfying user-specified
quality requirements. Our contributions are:
• Industrial-scale quality prediction: IPR trains

neural estimators on 1.5M prompts annotated
with calibrated reward scores from all candidate
models, enabling fine-grained quality estimation
that achieves 43.9% cost reduction in Claude
family while maintaining quality parity.

• Efficient extensible architecture: A modu-
lar design with backbone prompt encoder and
lightweight candidate-specific adapters enables
sub-150ms routing decisions and hours-long in-
tegration of new models without full retraining.

• User-controlled routing: A quality tolerance
parameter (τ ∈ [0, 1]) provides explicit control
over cost-quality trade-offs, from maximum qual-
ity (τ = 0) to aggressive savings (τ = 1), with
dynamic per-prompt threshold adjustment.

• IPRBench benchmark: We release a compre-
hensive benchmark containing 1.5M prompts
with quality rankings across multiple LLM fami-
lies, establishing standardized evaluation for rout-
ing systems.

IPR has successfully routed millions of requests
on our platform, achieving P90/P99 latencies of
85ms/108ms while reducing costs by 25.5-43.9%
across model families, validating both technical
efficacy and production readiness.

2 Problem Formulation and Routing
Framework

We present a formal treatment of the prompt rout-
ing problem focusing on performance-efficiency
trade-offs. Given a user prompt and candidate
LLMs, we aim to select the most cost-efficient
model whose predicted response quality satisfies
user-specified tolerance.

2.1 LLM Routing Formulation
We formulate LLM routing as a constrained op-
timization problem. Denote the set of candidate
LLMs as C. Given a prompt xi, each candidate
model c ∈ C would generate a response yi,c =
c(xi) with quality ri,c = R(xi, yi,c) ∈ [0, 1] mea-
sured by a reward function capturing human pref-
erence alignment. The cost of invoking model c is
denoted by vi,c.

To make the quality-cost trade-off explicit and
controllable, we minimize cost subject to qual-
ity constraints. Users specify a quality tolerance
τ ∈ [0, 1] defining acceptable quality degradation
relative to the best available model. This induces a
feasible set: Cτ = {c ∈ C | G(ri,c, τ) ≥ 0}, where
G is a performance-gating function determining
whether candidate performance satisfies user toler-
ance. The optimal routing decision selects the most
efficient model from the feasible set:

c∗i = argmin
c∈Cτ

vi,c. (1)

Since computing ri,c requires generating and evalu-
ating responses, we train a quality estimator r̂i,c =
Rθ(xi, c) that predicts response quality using only
the prompt and candidate identity:

θ∗ = argmin
θ

∑
i,c

ℓ(Rθ(xi, c), ri,c), (2)

where ℓ is a regression loss and ri,c are ground-
truth rewards from a calibrated reward model.

2.2 Routing Strategy
Given quality estimates r̂i,c, we implement quality-
constrained, cost-optimal routing through two
stages: (1) filter candidates meeting quality tol-
erance, (2) select the most cost-efficient qualified
model.

The gating function translates user tolerance τ
to a quality threshold:

G(r̂i,c, τ) = r̂i,c − ri,th ≥ 0, (3)

where ri,th = r̂i,max − τ · (r̂i,max − r̂i,min). (4)
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Figure 2: IPR Quality Estimator architecture. (a) Family-specific QEs process prompts with candidate model IDs to
predict quality scores. (b) New models are integrated via lightweight adapters on frozen PE and LIE components.

We use dynamic per-prompt r̂i,max = maxc∈C r̂i,c
to handle varying query complexity and fixed
r̂i,min = 0 for stability. This hybrid strategy adapts
to individual prompt difficulty while preventing
threshold collapse (More routing strategies are dis-
cussed in Appendix H). Once the feasible set Cτ (xi)
is determined, we select the minimum-cost candi-
date following Equation (1).

2.3 Evaluation

We evaluate IPR along two dimensions: quality
prediction accuracy and end-to-end routing perfor-
mance. For quality prediction, we use ranking-
based metrics including Top-K accuracy and F1
scores. For routing performance, we introduce a
area-under-the-curve (AUC) style metric named
Bounded-ARQGC to measure quality-cost trade-
offs across all tolerance settings and Cost Save
Ratio (CSR) for specific operating points. Detailed
metric definitions are provided in § A.

3 Intelligent Prompt Routing

3.1 System Overview

Figure 1 illustrates the IPR platform, comprising
three core components: (1) the Quality Estimator
(QE) that predicts response quality for each can-
didate model, (2) the Decision Optimization (DO)
module that executes quality-constrained routing
decisions, and (3) the Model Registry that main-
tains model metadata and configurations.

The routing pipeline operates as follows: Upon
receiving a user prompt with optional multi-turn
context, the system captures the user’s quality-cost
preference through tolerance parameter τ ∈ [0, 1]
(where τ = 0 enforces maximum quality and τ = 1

maximizes cost savings). The Quality Estimator
computes predicted quality scores r̂i,c for each can-
didate c ∈ C using the learned estimator Rθ(xi, c).
These predictions feed into the Decision Optimiza-
tion module, which applies tolerance-based filter-
ing to identify feasible candidates and selects the
minimum-cost model.

Our architecture achieves two critical objectives:
(1) extensibility through lightweight adapters for
new models without full retraining, and (2) effi-
ciency with sub-150ms routing decisions based
solely on prompt embeddings.

3.2 Quality Estimator Architecture

The Quality Estimator predicts scalar reward scores
approximating response quality for each prompt-
model pair. As shown in Figure 2, it consists of
three key components:

(1) Prompt Encoder: Maps input prompts to
dense embeddings pi = PE(xi) ∈ Rd capturing
semantic features relevant for quality prediction.
We employ family-specific encoders (e.g., Claude-
PE, Llama-PE) to capture model-specific patterns.

(2) LLM Identity Encoder: Provides learnable
embeddings ec = LIE(c) ∈ Rd′ for each candi-
date model, encoding behavioral properties like
verbosity and style.

(3) Quality Predictor: Fuses prompt and
LLM embeddings via concatenation and predicts
quality through a feed-forward network: r̂i,c =
QP(Concat(pi, ec)).

We adopt family-specific architectures with sep-
arate prediction heads per model, enabling better
within-family generalization and simplified inte-
gration of new models. Training uses reward
model scores as supervision signals, providing fine-

3



Method Claude Llama Nova
MAE ↓ Top-1 ↑ F1-macro ↑ MAE ↓ Top-1 ↑ F1-macro ↑ MAE ↓ Top-1 ↑ F1-macro ↑

IPR (RoBERTa-355M) 0.09503 0.7025 0.6612 0.09283 0.7025 0.4825 0.09681 0.6500 0.5311
IPR (Stella-400M) 0.09478 0.7321 0.6629 0.08626 0.7154 0.5139 0.09597 0.6408 0.5828
IPR (Qwen3-0.6B) 0.09027 0.7353 0.6934 0.09120 0.7257 0.4940 0.09509 0.6642 0.5834
IPR (Qwen3-4B) 0.08540 0.7463 0.6857 0.08091 0.7237 0.5111 0.08384 0.6853 0.6016
IPR (Qwen3-emb-0.6B) 0.08988 0.7408 0.6982 0.08963 0.7217 0.4991 0.09279 0.6674 0.5717
IPR (Qwen3-emb-4B) 0.08390 0.7508 0.6931 0.07997 0.7094 0.5664 0.08281 0.6826 0.6070

Table 1: Quality estimation performance on IPRBench test set. We report Mean Absolute Error (MAE), Top-1
Accuracy, and F1 scores for different router architectures. Best results are bolded, second best are underlined.
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Figure 3: Quality and cost trade-offs under different user tolerance.

grained quality labels at scale (detailed in § B).
IPR’s modular design enables seamless integra-

tion of new LLMs without full retraining. When
adding a new model, we freeze the core encoders
and attach lightweight adapters that specialize the
shared representations. This approach reduces inte-
gration time from days to hours while preserving
performance on existing models. Implementation
details are provided in § D.

4 Experiments

We evaluate IPR on the proposed IPRBench,
a comprehensive benchmark containing 1.5M
prompts with quality annotations across multiple
LLM families (details in § G). This industrial-scale
benchmark enables rigorous evaluation of routing
systems under realistic conditions.

4.1 Dataset Collection

We construct the training and evaluation datasets
using a diverse set of resources, covering open-
domain dialogue, instruction-tuning, summariza-
tion, reasoning, and domain-specific question an-
swering. The primary dataset includes responses
from multiple language model families (Claude,
Llama, Nova), where each instance contains out-
puts from all models within the same family, en-
abling direct comparison of response quality. Each
response is annotated with a reward score assigned
by the Skywork/Skywork-Reward-Gemma-2-27B

model2 (Liu et al., 2024a), which serves as the su-
pervision signal for training the quality estimator.
The scale and split of the Combined dataset across
different model families are summarized in Table 4.
More details are listed in § G

4.2 Experimental Setup
Model Families and Candidates. We evaluate
IPR on three major LLM families, encompassing
diverse model sizes and capabilities:
• Claude family: Claude-3-Haiku, Claude-3.5-

Haiku, Claude-3.5-Sonnet variants

• Llama family: Llama-3.1-{8B, 70B}, Llama-
3.2-{11B, 90B}, Llama-3.3-70B

• Nova family: Nova-Lite and Nova-Pro
These candidates represent different quality-cost
trade-offs, allowing comprehensive routing evalu-
ation. We chose to deploy family-specific routers
due to their superior in-domain empirical perfor-
mance (comparison of family-specific and unified
router is shown in § H).

Baseline Methods. We compare against: (1)
Static routing to fixed models providing cost
bounds, (2) Random uniform assignment, (3) Or-
acle routing with ground-truth quality scores, (4)
Budget-Aware Random maintaining IPR’s rout-
ing proportions but random assignment, and (5)
Classifier following RouteLLM’s approach.

2https://huggingface.co/Skywork/
Skywork-Reward-Gemma-2-27B-v0.2
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Method Claude Llama Nova

B-ARQGC ↑ Rel-ARQGC ↑ AUC ↑ B-ARQGC ↑ Rel-ARQGC ↑ AUC ↑ B-ARQGC ↑ Rel-ARQGC ↑ AUC ↑

Oracle 0.915 1.000 9.207 0.868 1.000 0.571 0.905 1.000 2.124

Static (Strongest) - - 9.023 - - 0.572 - - 2.099
Static (Weakest) - - 8.052 - - 0.502 - - 1.905
Random 0.517 0.434 8.554 0.496 0.504 0.537 0.486 0.431 1.999
RouteLLM 0.728 0.683 8.650 0.635 0.630 0.542 0.695 0.618 2.032

IPR (Roberta-355M) 0.732 0.695 8.766 0.628 0.625 0.532 0.707 0.622 2.038
IPR (Stella-400M) 0.799 0.724 8.889 0.663 0.676 0.549 0.731 0.650 2.047
IPR (Qwen3-0.6B) 0.808 0.730 8.895 0.641 0.653 0.547 0.739 0.658 2.049
IPR (Qwen3-4B) 0.813 0.743 8.909 0.672 0.685 0.549 0.766 0.687 2.056
IPR (Qwen3-emb-0.6B) 0.814 0.740 8.907 0.653 0.666 0.548 0.735 0.656 2.049
IPR (Qwen3-emb-4B) 0.821 0.756 8.925 0.685 0.698 0.550 0.766 0.687 2.056

Table 2: Overall routing performance on IPRBench test set. We report Bounded-ARQGC (primary metric), Relative
ARQGC improvement over random baseline, and absolute AUC. Best results (excluding Oracle) are bolded,
second-best are underlined. Rows with gray shading indicate encoder-based architectures.

Method
100% Quality 95% Quality

CSR Acc. Route Percentage CSR Acc. Route Percentage

Haiku Sonnet Haiku Sonnet

oracle 0.705 1.0 60.43 39.57 0.685 1.0 77.27 22.72
RouteLLM 0.425 0.605 50.28 49.72 0.712 0.732 75.32 24.68

IPR(RoBERTa) 0.385 0.638 48.8 51.2 0.658 0.756 79.2 10.8
IPR(Stella) 0.439 0.678 54.41 45.59 0.730 0.811 82.69 17.30
IPR(Qwen3-0.6B) 0.487 0.688 59.95 40.04 0.730 0.799 83.69 16.30
IPR(Qwen3-4B) 0.484 0.702 57.95 42.04 0.748 0.845 84.01 15.99
IPR(Qwen3-Emb-0.6B) 0.440 0.679 55.38 44.62 0.742 0.813 84.93 15.06
IPR(Qwen3-Emb-4.B) 0.465 0.695 56.10 43.89 0.754 0.843 84.25 15.74

Table 3: Router performance on IPRBench at 100% and 95% strongest model quality on Claude family.

Dataset Subset Claude Llama Nova

Combined
Training 1,510,415 1,325,628 1,510,250
Dev 5,641 4,976 5,640
Test 5,642 5,032 5,641

MS Marco Test 2,000 2,000 1,997
Nvidia Chat Test 2,000 2,000 1,999

Table 4: IPRBench size by model family and split.

Training Configuration. Models are trained on
IPRBench train set (1.5M samples) using 8 or 16
A100 GPUs. We employ Stella-v5-400M as default
prompt encoder, balancing quality and latency.

4.3 Results
We evaluate IPR across three key dimensions: (1)
quality estimation results, (2) overall routing per-
formance across the full tolerance spectrum, and
(3) cost savings at critical operating points. Our
results demonstrate that for Claude family, IPR is
able to achieve up to 43.9% cost reduction when
maintaining quality equivalent to the most expen-
sive model, while providing flexible quality-cost
trade-offs for diverse user preferences.

Quality Estimation Performance. Table 1
presents quality estimation results on IPRBench

test set across different backbone architectures.
Scaling backbone size consistently improves pre-
diction: Qwen3-emb-4B achieves lowest MAE
(0.084 for Claude), 13.3% better than RoBERTa-
355M. Embedding-based encoders outperform de-
coder counterparts at equivalent sizes. Notably, our
production choice Stella-400M achieves >73% top-
1 accuracy while being 8× faster than 4B models.

End-to-End Routing Performance. Table 2
presents the overall routing performance across the
full tolerance spectrum, measured by our primary
metric Bounded-ARQGC. Across all model fami-
lies, IPR variants significantly outperform baseline
approaches, with the best configurations achieving
0.821 (Claude), 0.685 (Llama), and 0.766 (Nova)
Bounded-ARQGC scores — representing relative
improvements of 58.8%, 38.1%, and 57.6% over
random routing respectively. The oracle router,
which has access to ground-truth quality scores, es-
tablishes upper bounds of 0.915, 0.868, and 0.905,
indicating room for future improvements in quality
estimation.

Several key patterns emerge from these results.
First, Modest quality estimation improvements
yield disproportionate routing gains: Stella-400M’s
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2-7% MAE reduction over RoBERTa translates
to 3-21% higher Bounded-ARQGC. Figure 3 vi-
sualizes quality-cost trade-offs, showing IPR pro-
duces Pareto-optimal curves compared to baselines.
Second, the relationship between model scale and
routing effectiveness exhibits diminishing returns —
Qwen3-emb-4B improves MAE by 8-11% over
Stella-400M but yields only 2-16% better routing
performance, suggesting that accurate relative qual-
ity rankings matter more than precise score predic-
tions. Figure 3 visualizes quality-cost trade-offs,
showing IPR produces Pareto-optimal curves dom-
inating baseline approaches.

Performance at Critical Operating Points.
While aggregate metrics capture overall routing
effectiveness, practical deployment often focuses
on specific quality-cost targets. Table 3 examines
router performance at two critical operating points:
maintaining 100% quality parity with the strongest
model and accepting 5% quality degradation. At
the 100% quality threshold — where users demand
performance equivalent to always using the most
capable model — IPR with Qwen3-0.6B achieves
48.7% cost savings by routing 59.9% of prompts
to the more efficient Haiku model. This demon-
strates that nearly 60% of real-world prompts do
not require the most expensive model to achieve
optimal quality. The routing distribution reveals
how different backbones assess prompt complexity.
Smaller encoders (RoBERTa-355M) exhibit more
conservative routing, sending only 48.8% to Haiku,
while mid-sized models like Qwen3-0.6B achieve
better prompt discrimination.

Results on IPRBench suggest IPR’s effective-
ness: achieving substantial cost reductions while
maintaining quality, with flexible user control over
trade-offs. Comprehensive ablation studies vali-
dating our design choices are provided in § H. To
verify routing quality, we conduct blind human
annotation studies detailed in Appendix E.

5 Related Works

We focus on existing prompt routing approaches,
and defer benchmarks and evaluations to § I.

Different model designs and corresponding train-
ing strategies have been proposed for LLM rout-
ing problem (Lu et al., 2024; Ding et al., 2024;
Ong et al., 2024; Sikeridis et al., 2024; Jitkrittum
et al., 2025; Feng et al., 2025; Su et al., 2025;
Chuang et al., 2025; Stripelis et al., 2024; Mei
et al., 2025; Sakota et al., 2024; Chen et al., 2023,

2024; Jin et al., 2025; Ding et al., 2025; Sikeridis
et al., 2025; Jitkrittum et al., 2025; Pan et al., 2025;
Zhuang et al., 2024, inter alia). HybridLLM (Ding
et al., 2024) employs a BERT-based encoder to op-
timize the cost-quality trade-off by routing "easy"
queries to resource-efficient smaller models and
"hard" queries to larger, more capable models.
EmbedLLM (Zhuang et al., 2024) introduces a
specialized encoder-decoder network for embed-
ding LLM representations. RouteLLM (Ong et al.,
2024) implements a dynamic routing mechanism
that intelligently routes prompts between a stronger
and weaker LLM through various methodologies:
similarity-weighted ranking, matrix factorization,
BERT-based classification, and Causal LLM clas-
sification. Zooter (Lu et al., 2024) also deploys
reward model scores as the supervision signals
and train the router with RankNet loss (Burges,
2010). Additionally, it leverages a tag-based la-
bel enhancement strategy to remove reward model
noises. GraphRouter (Feng et al., 2025) formu-
lates LLM selection as edge prediction problem
in a graph based framework and fully utilizes the
information in the training data by jointly mod-
eling the query-model, query-query, and model-
model relationship. OmniRouter (Mei et al., 2025)
formulates the routing task as a constrained opti-
mization problem and leverages a hybrid retrieval-
augmented predictor to predict the capabilities and
costs of LLMs. Different from aforementioned
works that deploy clustering or train with teacher
forcing, PickLLM (Sikeridis et al., 2024) proposes
a reinforcement learning-based routing framework
that optimizes a composite reward function incor-
porating latency, computational cost, and response
quality. IPR deploys a conventional supervised
learning approach and focus on scaling training
data mixture for robust LLM routing.

6 Conclusions and Future Works

We introduce Intelligent Prompt Routing — a low
latency solution to cost efficient prompt routing.
We detail our scientific experimentation: including
curation of a large-scale training and evaluation
dataset IPRBench, design of evaluation metrics
Bounded-ARQGC and CSR, different model ar-
chitecture, training strategy ablations throughout
the product development. Our future works will
include incorporating multifaceted evaluations and
supporting new model releases on our platform.

6



Limitations

While IPR demonstrates strong performance in pro-
duction deployment, several limitations merit dis-
cussion. First, our quality estimation relies on re-
ward model scores as supervision signals, which
may not perfectly capture all aspects of human
preference, particularly for specialized domains or
creative tasks. Second, the current framework as-
sumes independent routing decisions per prompt
without considering conversation-level context or
user session patterns, potentially missing optimiza-
tion opportunities in multi-turn interactions. Third,
our evaluation focuses on three model families
(Claude, Llama, Nova) on a single platform; gen-
eralization to other model families or deployment
environments requires further validation. Finally,
the modular adaptation mechanism, while efficient,
still requires access to labeled data for new mod-
els, which may not be immediately available upon
model release. Addressing these limitations, partic-
ularly through online learning from user feedback
and session-aware routing, represents important
directions for future work.
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A Evaluation Metrics

A.1 Quality Prediction Metrics

Since routing decisions depend on accurate quality
predictions, we validate the estimator’s ranking
ability:

Top-K Accuracy. Measures whether the pre-
dicted top-k models match the ground-truth top-k
models in exact order. For N candidates, we report
accuracies for k ∈ {1, ..., N − 1}.

Top-K F1. Relaxes the ordering constraint by
measuring set overlap between predicted and
ground-truth top-k models, providing a more for-
giving assessment of ranking quality.

A.2 Routing Performance Metrics

Bounded-ARQGC. To evaluate routing quality
across varying cost-quality trade-offs, we introduce
Bounded Average Response Quality Gain under
Cost (Bounded-ARQGC). This metric generalizes
the area under the quality-cost curve, normalized
to [0, 1].

Formally, let Q(α) denote the average response
quality achieved when the router operates at cost
budget α·Cmax, where Cmax is the cost of always us-
ing the most expensive model. Bounded-ARQGC
is defined as:

Bounded-ARQGC =

∫ 1

0

Q(α)−Qmin

Qmax −Qmin
dα, (5)

where Qmin and Qmax are the qualities achieved by
always using the cheapest and best models respec-
tively. Notably, Bounded-ARQGC has following
key properties:

• Random routing yields ≈ 0.5 (diagonal line).

• Perfect routing approaches 1.0 (upper-left cor-
ner).

• Higher values indicate better cost-quality
trade-offs.

Different from metrics that evaluate at fixed oper-
ating points or quality threshold values, Bounded-
ARQGC captures routing performance across all
possible tolerance settings, making it ideal for com-
paring routers without committing to specific de-
ployment configurations.

Cost Save Ratio (CSR). For practical deploy-
ment decisions, we report cost savings at specific
quality targets:

CSR(τ) =
vbest − vrouter(τ)

vbest
, (6)

where vrouter(q) is the cost to achieve quality level
q relative to the best model’s quality. For instance,
CSR(100%) indicates cost savings while maintain-
ing the best model’s full quality—our primary op-
erating point in production.

B Reward Modeling for Quality
Supervision

Training an accurate quality estimator requires
large-scale supervision signals that capture human
preferences over model responses. While human
annotations provide the gold standard, their cost
prohibits scaling to the millions of prompts needed
for robust routing. We address this challenge by
leveraging reward models (RMs) as automated
quality evaluators.

Our approach treats response quality estimation
as a regression problem: given a prompt xi and can-
didate model c’s response yi,c, the reward model
produces a quality score ri,c = RM(xi, yi,c) ∈
[0, 1]. The quality estimator then learns to predict
these scores directly from prompts without gener-
ating responses: r̂i,c = Rθ(xi, c).

This formulation provides three key advantages:
Fine-grained supervision: Unlike binary prefer-

ences or categorical labels, continuous RM scores
capture subtle quality differences between models.
For instance, while models may produce acceptable
responses for simple queries, RMs can distinguish
the incrementally better coherence or completeness
that justifies routing to more capable models.

Alignment with human judgment: We vali-
date that RM-based rankings align with human
preferences through systematic evaluation. Model
orderings derived from RM scores (e.g., Claude-
3.5-Sonnet > Claude-3-Opus > Claude-3-Haiku)
match human annotator rankings with 85% agree-
ment, significantly outperforming LLM-as-a-Judge
approaches.

Distribution properties: RM scores exhibit fa-
vorable statistical properties for learning, with well-
separated score distributions across models (typ-
ical separation of 0.1-0.2 between adjacent mod-
els) compared to the compressed ranges produced
by LLM judges. This separation provides clearer
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learning signals and more stable gradient updates
during training.

In practice, we employ the Skywork-Reward
model to generate training labels, chosen for its
strong correlation with human preferences and
computational efficiency. This approach enables us
to create training datasets of over 1.5M examples
while maintaining quality comparable to human-
annotated data.

C Quality Estimator Implementation
Details

C.1 Architectural Specifications
Prompt Encoder Details: The prompt encoder
uses a pretrained transformer model with fixed ar-
chitecture, fine-tuned on paired prompt-score exam-
ples. For family-specific quality estimation, each
model family maintains independent prompt en-
coders initialized from the same base encoder. Typ-
ical embedding dimension d = 768 for efficiency.

LLM Identity Encoder Details: Learnable em-
beddings for each candidate model with dimension
d′ = 128. These embeddings are learned jointly
with the predictor and capture model-specific be-
havioral patterns. For modular extension, we main-
tain separate LLM Identity Encoders per model
family.

Fusion Module Architecture: The concate-
nated embeddings pass through a 2-layer feed-
forward network with ReLU activation:

zi,c = Concat(pi, ec) (7)

h = ReLU(W1zi,c + b1) (8)

r̂i,c = σ(W2h+ b2) (9)

where σ is the sigmoid function to ensure output in
[0, 1].

C.2 Unified vs. Family-Specific Design
While a unified QE architecture with shared en-
coders and single prediction head is more compact,
our experiments show superior performance using
family-specific variants: - 5-8% higher ranking ac-
curacy within families - Better generalization to
new models within the same family - Simplified
debugging and model-specific optimization - Re-
duced interference between models with distinct
output behaviors

D Modular Adaptation Implementation

To ensure extensibility, our design incorporates
lightweight adapter modules for seamless integra-

tion of new LLMs. As illustrated in Figure 2, we
freeze core encoders after initial training and attach
learnable adapters for new models.

Adapter Architecture: - PE Adapter X: 2-
layer feed-forward network with residual connec-
tion, inserted after frozen prompt encoder - LIE
Adapter X: Single linear transformation after
frozen identity encoder - New QP Head: Model-
specific prediction head trained from scratch

Training Procedure: 1. Freeze all existing
model components 2. Initialize adapters with iden-
tity mapping 3. Train only adapters and new QP
head on data mixture: - 70% new model data -
30% existing model data (for consistency) 4. Use
consistency loss to maintain performance:

L = Lnew + λ
∑

i,c∈Cold

||r̂i,c − r̂frozen
i,c ||2 (10)

This framework reduces new model integration
from 2-3 days of full training to 3-4 hours of
adapter training, while maintaining 98%+ perfor-
mance on existing models.

E Human Annotation Results

We conducted a comprehensive evaluation of IPR-
selected responses through human annotations fol-
lowing the specified protocol. Our evaluation
framework employed a multi-batch annotation
strategy to ensure robust and reliable assessments
across different model families.

The human evaluation dataset was derived from
a subset of the IPRBench. We deliberately ex-
cluded coding-related tasks from the evaluation due
to limitations in annotation expertise for technical
code assessment. The resulting dataset comprised
895 prompts, each evaluated across 9 different
models, including 4 models from the Claude fam-
ily and 5 models from the Llama family, resulting
in 8055 responses.

We employed a rigorous evaluation protocol
where each response underwent three blind anno-
tation passes. The final scores were determined
through majority voting across these passes, fol-
lowed by calculation of the average overall satis-
faction score for each model.

Overall Satisfaction Scores The human annota-
tion results revealed clear performance hierarchies
within both model families. Table 5 presents the
average overall satisfaction scores after majority
voting.

11



Table 5: Average Overall Satisfaction Scores by Model

Model Average Score

Claude Family
Claude 3 Haiku 0.8209
Claude 3.5 Sonnet V1 0.8220
Claude 3.5 Haiku 0.8654
Claude 3.5 Sonnet V2 0.8708

Llama Family
Llama 3.1 8B 0.7901
Llama 3.1 70B 0.8136
Llama 3.2 11B 0.8554
Llama 3.2 90B 0.8692
Llama 3.3 70B 0.8767

To provide more granular insights into model
performance differences, we conducted pairwise
comparisons for priority model pairs. Table 6
presents the win-tie-lose rates for three key com-
parisons that are critical for routing decisions.

Table 6: Pairwise LLM Comparison Results

Pair Win (%) Tie (%) Lose (%)

Haiku-3 vs. Sonnet 3.5 11.28 52.85 31.73
Haiku-3.5 vs. Sonnet 3.5 14.19 61.68 16.54
Llama-3.2 11B vs. 3.3-70B 12.74 53.18 20.11

The human annotation results demonstrate
strong alignment with our expected performance
hierarchies for IPR decisions. Specifically, we ob-
serve the following orderings for all priority model
pairs:

1. Claude Family: Haiku < Sonnet 3.5 V2 and
Haiku 3.5 < Sonnet 3.5 V2

2. Llama Family: Llama 3.2 11B < Llama 3.3
70B

These rankings are consistent with the reward
model score comparisons, providing convergent
validity for our evaluation framework. The high
percentage of ties in pairwise comparisons (rang-
ing from 52.85% to 61.68%) suggests that model
capabilities overlap significantly for many tasks,
highlighting the importance of careful model selec-
tion based on specific use case requirements.

F Cost Calculation Formula and Detailed
Model Costs

We compute the routing cost as the sum of both
input and output token cost per 1M tokens based

on the Amazon Bedrock price list as of March 19,
2025. In our following formula, we use normalized
cost to make it invariant to different datasets with
different prompt or response lengths.

Specifically, given:

• A prompt xi

• The selected LLM is mi

• The input cost per token is Pmi for LLM mi

• The output cost per token is Qmi for LLM mi

• The input prompt length is Lxi

• The output response length for prompt xi and
model mi is O(xi,mi)

The normalized cost for N prompts and their
correspondingly selected LLMs is computed as:

C =

∑N
i Lxi × Pmi∑N

i Lxi

+

∑N
i O(xi,mi)×Qmi∑N

i O(xi,mi)
(11)

F.1 Language Model Unit Prices
Model prices for each LLM candidate is listed in
Table § F.1. Note: Prices are subject to change.

LLM Family Model Input Tokens Output Tokens

Anthropic

Claude 3.5 Sonnet V2 $0.003 $0.015
Claude 3.5 Sonnet V1 $0.003 $0.015
Claude 3.5 Haiku $0.0008 $0.004
Claude 3 Haiku $0.00025 $0.00125

Llama

Llama 3.3 Instruct (70B) $0.00072 $0.00072
Llama 3.2 Instruct (90B) $0.00072 $0.00072
Llama 3.2 Instruct (11B) $0.00016 $0.00016
Llama 3.1 Instruct (70B) $0.00099 $0.00099
Llama 3.1 Instruct (8B) $0.00022 $0.00022

Nova Nova Pro $0.0008 $0.0032
Nova Lite $0.00006 $0.00024

Table 7: Model pricing per 1,000 Tokens

G Dataset Collection

The composition of the Combined training set is
summarized in Table 8: the largest portion comes
from a multi-turn chat corpus (approximately 61%),
followed by instruction-tuning and knowledge-
intensive datasets. This mixture provides broad
coverage across natural language task types, allow-
ing the quality estimator to generalize effectively
across diverse prompt styles.

The training set comprises approximately 1.5
million examples for Claude, with similar sizes
for Llama and Nova after filtering out examples
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with response generation failures due to throttling
or timeout. Development and test sets contain be-
tween 5,000 and 6,000 examples per model family
and follow a similar prompt distribution.

To evaluate generalization, we include two
held-out test sets: MS Marco (Nguyen et al.,
2016) and Nvidia Chat (Liu et al., 2024b)
which focus on retrieval-augmented question
answering, each with around 2,000 prompts.
All test responses are also scored by the
Skywork/Skywork-Reward-Gemma-2-27B reward
model to support evaluation.

Dataset Name Count Proportion

LMSYS-Chat-1M (Zheng et al., 2024a) 925,278 61.26%
ShareGPT-Vicuna (Wang et al., 2024) 201,922 13.37%
MixInstruct (Jiang et al., 2023) 98,473 6.52%
Nectar (Zhu et al., 2023) 98,177 6.50%
AnswerSumm (Fabbri et al., 2022) 42,454 2.81%
HellaSwag (Zellers et al., 2019) 41,801 2.77%
StrategyQA (Geva et al., 2021) 39,385 2.61%
CommonsenseQA (Talmor et al., 2019) 39,081 2.59%
BANKING77 (Casanueva et al., 2020) 14,073 0.93%
GSM8K (Cobbe et al., 2021) 9,771 0.65%

Table 8: Training dataset composition by source dataset.

H Ablation Studies

We conduct comprehensive ablations to validate
our design choices across three critical dimensions:
training objectives, architectural decisions, and
routing strategies.

Loss B-ARQGC Quality CSR Route Acc
MSE 0.7361 0.5451 0.3130 0.6353
Hinge Loss 0.6897 0.5438 0.2660 0.6035
ListNet 0.7292 0.5448 0.2656 0.5673

Table 9: Comparison of training loss functions (aver-
aged over three model families).

Training Loss Functions. Table 9 compares dif-
ferent loss functions for training the quality esti-
mator, averaged across all model families. While
we experimented with ranking-based losses that
directly optimize for relative ordering, MSE loss
achieves the best overall performance with 0.736
Bounded-ARQGC, outperforming hinge loss by
6.7% and ListNet by 0.9%. This result can be ex-
plained by two factors. First, continuous regression
targets provide richer gradient signals than pair-
wise or listwise comparisons, enabling more stable
optimization. Second, MSE loss naturally captures
the magnitude of quality differences, which proves

crucial for threshold-based routing decisions. In-
terestingly, while hinge loss achieves comparable
routing accuracy (60.3% vs 63.5%), it significantly
underperforms in cost savings (26.6% vs 31.3%),
suggesting that accurate quality magnitude esti-
mation is more important than perfect ranking for
cost-optimal routing.

Family-Specific vs. Unified Routing. Table 10
examines the trade-offs between training separate
routers for each model family versus a single uni-
fied router. Family-specific routers consistently
outperform unified approaches on in-domain data,
achieving higher Bounded-ARQGC scores (0.799
vs 0.792 for Claude, 0.663 vs 0.659 for Llama,
and 0.731 vs 0.729 for Nova). This specializa-
tion advantage stems from reduced learning com-
plexity — each router focuses on quality patterns
within a homogeneous model group. Conversely,
unified routers excel at generalization: on out-
of-distribution datasets, they achieve 5.7%, 1.6%,
and 7.6% higher Bounded-ARQGC for Claude,
Llama, and Nova respectively. This reveals a bias-
variance trade-off where family-specific routers
precisely capture in-domain patterns but may over-
fit to family-specific characteristics. Given our pro-
duction emphasis on in-domain performance, we
deploy family-specific routing while recognizing
unified routing’s merits for heterogeneous work-
loads.

Routing Strategy and Threshold Calibration.
We ablate two key aspects of our routing algo-
rithm: the threshold computation method (dynamic
vs. static) and the quality reference point. As de-
scribed in Section 2.2, dynamic thresholds adapt
to each prompt’s quality distribution while static
thresholds use global statistics. As shown in Fig-
ure 6, our experiments reveal that Dynamic Max
and Dynamic MinMax achieves the optimal AUC
compares to others. Among this two, Dynamic
Max has more smooth quality and cost curve vs
tolerance compared to Dynamic MinMax, giving
user more freedom to control the routing behavior.
This hybrid strategy effectively handles prompts
with varying difficulty — easy prompts with high
quality scores across all models benefit from dy-
namic adaptation, while the fixed minimum pre-
vents threshold collapse for uniformly challenging
prompts. This also indicates the per-prompt nor-
malization is crucial: without adapting thresholds
to individual quality distributions, routers exhibit
excessive conservatism, routing more prompts to
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Figure 4: Quality v.s. tolerance with different QE backbones.
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Figure 5: Cost v.s. tolerance with different QE backbones.

expensive models unnecessarily.

I Extended Discussions on Related Works

Routing benchmarks. Existing LLM routing
benchmarks are mostly curated from popular
NLP datasets covering different facets of LLM
usage. MixInstruct (Jiang et al., 2023) con-
sists of 110k examples focusing on the chat ca-
pability of LLMs. The mixture is primarily
from four sources: Alpaca-GPT4 (Taori et al.,
2023), Dolly-15K (Conover et al., 2023), GPT4All-
LAION (LAION-AI, 2023) and ShareGPT (Wang
et al., 2024). RouterBench (Hu et al., 2024) con-
structs a benchmark with over 405k inference out-
comes from 11 representative LLMs across 8 di-
verse datasets to support the development of rout-
ing strategies. Routing strategies covered in Router-
Bench are simple methods like KNN and MLP
routers. RouterEval (Huang et al., 2025) is a con-
current work that curates a large scale evaluation
benchmark, spanning 12 popular LLM evaluations
across various areas such as commonsense reason-
ing, semantic understanding, etc, and including
over 200M performance records. This technical
report describes our solution to curate IPRBench,
an industrial-scale LLM routing benchmark that
focuses on natural language understanding and text

generation capabilities of LLMs, and includes mod-
els currently served on our platform.

Routing evaluations. Existing works (Ong et al.,
2024; Hu et al., 2024; Huang et al., 2025; Lu et al.,
2024, inter alia) mostly categorize evaluation met-
rics into two groups: (1) effectiveness metrics and
(2) efficiency metrics.3

Effectiveness metrics directly evaluate measure
whether a query is routed to the most perfor-
mant routing candidates. RouterEval (Huang
et al., 2025), CP-Router (Su et al., 2025) and Self-
REF (Chuang et al., 2025) evaluate routing effec-
tiveness by Accuracy, i.e., the correctness of fi-
nal predictions, which can be considered a top-1
metric. HybridLLM (Ding et al., 2024) focus on
text generation tasks and adopt BARTScore (Yuan
et al., 2021) as the quality/effectiveness metric.
RouteLLM (Ong et al., 2024) defines an average
response quality score that covers different NLP
tasks, e.g., correctness on golden-labeled dataset
or a numerical rating. In this technical report, we
focus on top-1 accuracy, F1 scores as well as AUC
as the main performance metrics.

Different from straightforward effectiveness met-

3Some works like (Huang et al., 2025) also refer to as (1)
routing performance metrics and (2) cost reduction metrics.
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In-Distribution Out-of-Distribution

Model Type MAE ↓ B-ARQGC ↑ CSR ↑ ACC ↑ MAE ↓ B-ARQGC ↑ CSR ↑ ACC ↑

Claude
specific 0.09478 0.799 0.439 0.678 0.1532 0.523 0.369 0.57
unified 0.1005 0.792 0.421 0.668 0.142 0.553 0.398 0.61

Llama
specific 0.08626 0.663 0.0773 0.677 0.1221 0.512 0.0712 0.59
unified 0.08710 0.659 0.0720 0.672 0.1190 0.520 0.0725 0.60

Nova
specific 0.09597 0.731 0.255 0.652 0.1447 0.525 0.152 0.60
unified 0.1021 0.729 0.242 0.648 0.1324 0.565 0.180 0.64

Table 10: In- and out-of-distribution performance comparison of family-specific and unified routers. Cost-saving
ratio (CSR) and routing accuracy (ACC) are reported at 100% best candidate performance. Bold values indicate
superior performance within each distribution type.
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Figure 6: Quality-performance trade-off (left), quality-tolerance (middle), and cost-tolerance(right) relationship
with different routing strategies

Strategy min max
dynamic max 0 dynamic
dynamic minmax dynamic dynamic
static dynamic static dynamic
static static static

Table 11: Routing strategy comparison

rics, there lacks a established efficiency metric that
applies to different models and platforms, due to
different notions of cost definitions. For example,
HybridLLM (Ding et al., 2024) directly use the
monetary cost as a proxy for the cost metric, e.g.,
$ per 1M tokens. Some works like (Su et al., 2025)
uses number of tokens to represent the cost. In
contrast to this absolute cost metric, works such as
RouteLLM (Ong et al., 2024) adopt relative cost
efficiency metric. For example, RouteLLM (Ong
et al., 2024) define the cost efficiency metric as the
percentage of calls to strong models. For evaluation
of IPR, we adopt the proposed Bounded Average
Response Quality Gain under Cost and Cost Save
Ratio as the main efficiency metrics. We should
note that, due to quick advancement of LLM infer-
ence optimization, exemplified by frameworks like
vLLM (Kwon et al., 2023) and SGLang (Zheng
et al., 2024b), the cost metric needs to be actively
refreshed to reflect the actual inference cost.

The central goal of the LLM routing problem
is to optimize the trade-off between effectiveness
and efficiency. Various metrics have been used for
evaluation and subsequently adopted as training
objectives for the Router. We skip the detailed dis-
cussions and kindly refer readers to those original
works for design rationales and exact formulations.
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